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Controlling high-order chaotic discrete systems by lagged adaptive adjustment

Weihong Huang*
Nanyang Technological University, Nanyang Avenue, 63978 Singapore

~Received 19 June 2001; revised manuscript received 10 September 2001; published 21 December 2001!

A lagged adaptive adjustment mechanism has been developed to stabilize a high-order discrete system.
Theoretical analysis and computer simulations have been provided to show the effectiveness and efficiency of
this mechanism in practice.
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I. MOTIVATIONS

In recent years there has been much attention give
theoretical and experimental methods for controlling cha
or more generally, stabilizing unstable dynamical syste
Recent advances and developments can be seen from@1–6#
and references therein. In Ref.@2#, an adaptive adjustmen
mechanism is proposed to stabilize an unstable multidim
sional discrete system. This mechanism, while inherited fr
the adaptive expectation scheme widely applied in econ
ics, possesses many unique advantages over the others
as ~i! demanding neithera priori information about the sys
tem itself nor any externally generated control signal and~ii !
always forcing the original system to converge to its gene
periodic points. In this paper, the same adaptive ‘‘spirit’’
applied to the stabilization of an unstable high-order discr
system with a lagged adaptive adjustment mechanism, w
adjustments are achieved through delayed feedback.

The issue of controlling high-order chaos in the fram
work of spatiotemporally coupled map lattice systems
long been the interest of physicists. Experimental succe
have been demonstrated in various researches@3,6#. In con-
trast, we shall focus on high-order discrete systems in g
eral instead of some specific systems, and emphasize o
ploring the nature of unstable periodic~fixed! points. Both
theoretical studies and computer simulations will be carr
out to show the pros and cons of this mechanism in pract

II. ADAPTIVE FEEDBACK MECHANISM

Consider ann-dimensional dynamical system defined b

Xt115F~Xt!, ~1!

whereXt5(x1t ,x2t , . . . ,xnt), andF5( f 1 , f 2 , . . . ,f n), with
f i being well defined functions on a domain inRn.

Definition 1: By adaptive adjustment mechanism, we
mean the following adjusted system:

Xt115F̃G5~ I2G!F~Xt!1GXt , ~2!

whereG5diag$g1 ,g2 , . . . ,gn% is a diagonal matrix and is
referred to as anadaptive parameter matrix. The value ofg i
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represents the adjustment speed fori th variable (i
51,2, . . . ,n) and is assumed to vary in aconventional range
@0,1# and in ageneralized range@1,1`).

Let X̄ be a fixed point of Eq.~1!, that is,X̄5F(X̄). It is

easy to see that the systemF̃G shares exactly the same set

fixed points ofF, that is,X̄5F̃G(X̄).

DenoteJ(X̄) as the Jacobian matrix of the original sy

tem F, evaluated atX̄, with $l1 ,l2 , . . . ,ln% as then roots
of the characteristic equation, i.e.,

ulI2J~X̄!u5)
j 51

n

~l2l j !50,

whereI is an identity matrix.

The stability of a fixed point,X̄, is jointly determined by
all the eigenvalues$l j%. Let ulmaxu5maxjulju. Mathemati-

cally, the fixed pointX̄ is stable ifulmaxu,1.
Denote a pair of complex conjugatesl j and l̄ j by

l j5aj1bj i, l̄ j5aj2bj i,

with the modulusul j u5ul̄ j u5Aaj
21bj

2.
It is shown in Huang@2# that, for a n-dimensional dy-

namical system, Eq.~1!, if an unstable fixed pointX̄ is either
a Type-I fixed point (aj,1 for all j 51,2, . . . ,n) or a
Type-II fixed point (aj.1 for all j 51,2 . . . ,n), it can al-
ways be stabilized through an adaptive adjustment mec
nism with a suitable choice of adaptive parameter matrix

Now consider a general high-order discrete system:

yt5 f ~yt21 ,yt22 , . . . ,yt2n!, ~3!

wheren.1 and, without loss of generality,f is assumed to
be first-order continuous.
©2001 The American Physical Society15-1
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The study of Eq.~3! is usually conducted in a multidimensional space through variable transformations

x1,t5yt2n11

x2,t5yt2n12

•••

xn21,t5yt21

xn,t5yt, ~4!

with which the high-order dynamical system Eq.~3! is converted into a multidimensional discrete dynamical system
follows:

x1,t115x2,t

x2,t115x3,t

•••

xn21,t115xn,t

xn,t115 f ~xn,t ,xn21,t , . . . ,x1,t!. ~5!

Therefore, the stabilization of Eq.~3! can be achieved through the stabilization of Eq.~5!. If an adaptive adjustmen
mechanism defined in Eq.~2! is applied, the system Eq.~5! must be modified as

x1,t115~12g1!x2,t1g1x1,t

x2,t115~12g2!x3,t1g2x2,t

•••

xn21,t115~12gn21!xn,t1gn21xn21,t

xn,t115~12gn! f ~xn,t ,xn21,t , . . . ,x1,t!1gnxn,t, ~6!
m
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with adjustment parametersg i.0, for i 51,2, . . . ,n.
In reality, however, stabilizing the high-order syste

through the implementations of adaptive mechanism~6! may
turn out to be either impractical or expensive. It can be b
more practical and more economical to stabilize a high-or
system defined by~3! with adaptive adjustment throug
lagged variables. Therefore, we propose the following lag

FIG. 1. Lagged adaptive adjustment.
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adaptive adjustment mechanism for the high-order disc
dynamical system~3!.

Definition 2. By a lagged adaptive adjustmentfor a
higher-order discrete system~3!, we mean the following ad-
justed system:

yt5 f̃ ~yt21 ,yt22 , . . . ,yt2n!

5S 12(
j 51

n

g j D f ~yt21 ,yt22 , . . . ,yt2n!1(
j 51

n

g j yt2 j ,

~7!

whereg j , j 51,2, . . . ,n, arefeedback parameters.
It is not difficult to verify that, if ȳ is a fixed point of the

high-order dynamical system~3!, that is, ȳ5 f ( ȳ,ȳ, . . . ,ȳ),
then ȳ is also a fixed point off̃ and vice versa.

The practical implementation of lagged adaptive adju
ment @8# is illustrated in Fig. 1. While lagged variable
$yt2 j% j 51

n are assumed to be available for the original s
tem, only ‘‘additive’’ and ‘‘scaling’’ devices are utilized to
achieve the adjustment. Therefore, the whole implementa
requires neither apriori internal information about the sys
tem itself nor any externally generated control signal.
5-2
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With the same transformation given by Eq.~4!, the equivalent multidimensional counterpart for Eq.~7! is

x1,t115x2,t

x2,t115x3,t

•••

xn21,t115xn,t

xn,t115S 12(
j 51

n

g j D f ~xn,t ,xn21,t , . . . ,x1,t!1(
j 51

n

gn2 j 11xj ,t. ~8!
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The differences in implementation between the adap
adjustment mechanism and lagged adaptive adjustmen
clearly self-evident in Eqs.~6! and ~8!.

III. MAIN THEOREM

Let f i8 denote the partial derivative off with respect to

yt2 i evaluated at an unstable fixed pointȳ, that is,

f i85
] f

]yt2 i
U

yt215yt22•••5yt2n5 ȳ

.

The following theorem provides a necessary and su
cient condition for the success of stabilization with lagg
adaptive adjustment.

Theorem 1.For a high-order discrete dynamical syste
defined by Eq.~3!, with f being first-order continuous, whe
and only when the condition

(
j 51

n

f j85” 1, ~9!

is met will there exist at least one set of feedback parame

$g i* % i 51
n such that the unstable fixed pointȳ can be stabilized

through adaptive feedback defined by Eq.~7! when g i

P(g i* 2e j ,g i* 1e j ), wheree j>0, for all i 51,2, . . . ,n.
Proof. We start with the ‘‘when’’ part, that is, the suffi

cient condition.
The related Jacobian evaluated at the unstable fixed p

ȳ for Eq. ~8! is given by

J̃~ ȳ!5S 0 1 0 0 0

0 0 1 0 0

A ••• � � A

0 0 ••• 0 1

an an21 ••• a2 a1

D ,

where

ai5S 12(
j 51

n

g j D f i81g i ,

for i 51,2, . . . ,n.
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The characteristic equation ofJ̃( ȳ) can thus be expresse
as

ln2a1ln212a2ln222•••2an21l2an50. ~10!

The convergence of adjusted system~8! to the unstable
fixed point ȳ requires that the maximum modulus of chara
teristic roots for Eq.~10! must be strictly less than unity
which can be ensured if each and everyaj can be forced to
be arbitrarily small in absolute value by suitably choosi
g i5g i* , for all i 51,2, . . . ,n.

We thus need to show the existence of such$g i* % when
the condition( j 51

n f j85” 1 is satisfied.
Actually, consider an extreme case in which a particu

set$g i* % i 51
n is chosen to forceai50, for all i 51,2, . . . ,n, so

that the characteristic equation~10! reduces toln50, which
in turn makes all eigenvalues take zero values.

Notice that the conditionsai50, i 51,2, . . . ,n, implies
that there exists at least one set of solutions$g i* % i 51

n for the
following linear-equation system:

f i8(
j 5” i

n

g j* 1~ f i821!g i* 5 f i8 , i 51,2, . . . ,n,

or, in matrix form:

F•g5f, ~11!

whereg5(g1* ,g2* , . . . ,gn* )T, fÄ( f 18 , f 28 , . . . ,f n8)
T, and

FÄ3
F1

F2

A

Fi

A

Fn

4 53
f 1821 f 18 ••• f 18 ••• f 18

f 28 f 2821 ••• f 28 ••• f 28

A A A A A A

f i8 f i8 ••• f i821 ••• f i8

A A A A A A

f n8 f n8 ••• f n8 ••• f n821

4 .

The sufficient condition for the existence of the solutiong
of Eq. ~11! is uFu5” 0. We shall further show thatuFu5” 0 is
equivalent to condition~9!.

Apparently, summing up all row vectors of matrixF gives
a null vector if( j 51 j

n f j851.
5-3
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On the other hand, ifuFu50, there must exist a set o
scalarsc1 ,c2 ,•••cn ~not all zeros! such thatc1F11c2F21
•••cnFn50, where0 indicates a null vector, which implie
that,

(
j 51

n

cj f j85ci , for i 51,2, . . . ,n,

or, equivalently,c15c25•••5cn , the latter in turn reveal-
ing that( j 51 j

n f j851.
Therefore, we can be ensured the existence of a uniqug

for Eq. ~11! when condition~9! is met.
Furthermore, the continuity of functionf implies the ex-

istences of e j such that wheng iP(g i* 2e j ,g i* 1e j ), j
51,2, . . . ,n, the maximum modulus of characteristic roo
for Eq. ~10! can be safely kept to be less than unity.

Next, we turn to prove the ‘‘only when’’ part, that is, th
necessity of Eq.~9!.

We proceed by showing that unity would be one of t
characteristic roots of Eq.~10!, should the condition~9! be
violated.

In fact, if l51 is a solution of Eq.~10!, substitution of
l51 into Eq. ~10! would lead to an equality:( j 51

n aj51,
which in turn demands that

S 12(
j 51

n

g j D (
j 51

n

f j81(
j 51

n

g j51. ~12!

No matter whatg j ’s are taken, the equality of Eq.~12! is
always achieved if( j 51

n f j851. That is, there is no way to

improve the stability of the fixed pointȳ when condition~9!
is violated. Q.E.D.

To improve our understanding of the functioning
lagged adaptive adjustment, we shall then examine a s
plest second-order discrete system in detail.

Corollary 1 (A general second-order discrete system). For
a general second-order discrete systemyt5 f (yt21 ,yt22), the
lagged adaptive adjustment achieved through

yt5 f̃ ~yt21 ,yt22!

5@12~g11g2!# f ~yt21 ,yt22!1g1yt211g2y, ~13!

can force the system to converge to an unstable fixed poiȳ
if and only if the following conditions are met:

2@12~g11g2!# f 282g2,1, ~14!

@12~g11g2!#~ f 181 f 28!1~g11g2!,1, ~15!

@12~g11g2!#~ f 182 f 28!1~g12g2!.21. ~16!

Proof. The Jacobian of Eq.~13! at any specified fixed
point ȳ is given by

J ~ ȳ!5S 0 1

@12~g11g2!# f 281g2 @12~g11g2!# f 181g1
D .

Denote
01621
-

T5@12~g11g2!# f 181g15trace of J,

D52@12~g11g2!# f 282g25determinant of J,

then the associated eigenvalues forJ( ȳ) can be simply ex-
pressed as~see Ref.@2# for a detailed discussion!:

l1.25
1

2
~T6AT 224D!.

The local convergency of the system to a particular fix
point ȳ ~that is, the local stability ofȳ) is guaranteed if and
only if the following three inequalities hold simultaneousl

D,1

T2D,1

T1D.21
J .

Substituting T5@12(g11g2)# f 181g1 and D52@1
2(g11g2)# f 282g2 will then give us the conditions~14!–
~16!. Q.E.D.

Therefore, the three inequalities~14!–~16! form an effec-
tive region in the adaptive parameters (g1 ,g2) space, inside
which, all $g1 ,g2% combinations ensure the stability ofȳ.

IV. NUMERICAL SIMULATIONS

Example 1 (Delayed logistic system!. Consider the follow-
ing second-order discrete system:

yt5u~yt21 ,yt22!

54ayt21~12yt21!14~12a!yt22~12yt22!, ~17!

where 1.a.0. This system is a higher-order version of th
famous logistic equation and hence gives a unique nontri
fixed pointȳ53/4, which is stable when Eqs.~14!–~16! hold
for g15g250, which leads to 1/2,a,3/4. Therefore, either
when aPA15(0,1/2) or aPA25(3/4,1), the nontrivial
fixed point ȳ53/4 becomes unstable. It is worthwhile to n
tice that the asymptotic dynamical behavior in long term
totally different whenaPA1 and aPA2. This can be seen
from the shapes of chaotic strange attractors depicted in
(yt ,yt21)-plane, as shown in Fig. 2. It is easy to verify th
u18( ȳ)522a andu28( ȳ)522(12a), which gives

u182u285224a

u181u28522 J ,

therefore, condition~9! is not violated and according to
Theorem 1 the implementation of a lagged adaptive adj
ment mechanism by

yt5 ũ~yt21 ,yt22!5~12g12g2!@4ayt21~12yt21!

14~12a!yt22~12yt22!#1g1yt211g2yt22 ,

should be an effective and efficient way to stabilize t
system.
5-4
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FIG. 2. Strange attractors ofu (y05y1

50.3333).
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The conditions~14!–~16! become

g2.
1

322a
@122a22~12a!g1#

g2,12g1

~324a!g2,324a1~4a21!g1

. ~18!

Now we examine two particular values ofa, one in A1
and the other inA2.

Case I, a51/16. Condition~18! reduces to

g2.
7

23
2

15

23
g1

g2,12g1

g2,12
3

11
g1

.

Case II, a515/16. Condition~18! reduces to

2
7

9
2

1

9
g1,g2

g2,12g1

g2.12
11

3
g1

.

The effective regions for the feedback parametersg1 and
g2 formed by the above inequalities are depicted in Fig.
While Fig. 4~a! illustrates a typical trajectory of a delaye
01621
.

logistic system fora51/16, two stabilized trajectories star
ing at the same initial points as in Fig. 2~a! and Fig. 4~a! are
shown in Figs. 4~b! and 4~c! for different feedback param
eters. One qualitative difference is observed between the
fective regions shown in Figs. 3~a! and 3~b!. While in the
former case (aPA1), the effective region covers parts of th
g1 andg2 axes, which means that a lagged adaptive adju
ment from eitheryt21 or yt22 alone is sufficient to stabilize
the original system. But for the latter case (aPA2), the ef-
fective region only covers parts of theg1 axis but not theg2
axis, which means that a lagged adaptive adjustment f
eitheryt22 alone is insufficient to stabilize the original sy
tem @7#. This is shown in Figs. 5~b! and 5~c!. While lagged
adaptive adjustment fromyt21 alone does stabilize the tra
jectory in a few iterations, lagged adaptive adjustment fr
yt22 alone fails to do so.

V. UNIFORMLY LAGGED ADAPTIVE ADJUSTMENT

It is also observed that in Fig. 2, the diagonal lines (g1
5g2) pass the effective regions for both cases, which me
that the stabilization can always be achieved by uniform
lagged adaptive adjustment.

Definition 3. By a uniformly lagged adaptive adjustmen
we meang j5g/n.0 for all j 51,2, . . . ,n in Eq. ~7!, that is,

yt5 f̃ g~yt21 ,yt22 , . . . ,yt2n!

5~12ng! f ~yt21 ,yt22 , . . . ,yt2n!1g(
j 51

n

yt2 j .

~19!
FIG. 3. Effective regions of
feedback parameters.
5-5
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FIG. 4. Numerical simulations foru and ũ, a51/16 (y05y150.3333).
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By noticing thatyt→ ȳ if g→1/n, we may expect that the
results stated in Theorem 1 still apply, that is, condition~9! is
both a necessary and sufficient condition for the function
of lagged adaptive adjustment. It is a pity that we are s
unable to verify such intuition in theory. Nevertheless, fo
second-order discrete system, we do arrive at the follow
conclusion:

Corollary 2. For a second-order discrete dynamical s
tem defined byyt5 f (yt21 ,yt22), if ( j 51

n f 181 f 285” 1 holds at
an unstable fixed point, there always exists an intervaG
5(1/22a,1/21b), a,b>0,1b),a,b>0, such that the
unstable fixed pointȳ can be stabilized through a uniforml
lagged adaptive adjustment defined by Eq.~19! whengPG.

Proof. For a second-order discrete system, a uniform
lagged adaptive adjustment amounts tog15g25g.0, and,
therefore, conditions~14!–~16! become

2~122g! f 282g,1, ~20!

~122g!~ f 181 f 28!12g,1, ~21!

~122g!~ f 182 f 28!.21. ~22!

As long as f 181 f 285” 1, the stabilization can be ensure
through letting 2g approach unity either from below (g
51/22e, e→0) or from above (g51/21e, e→0). Q.E.D.
01621
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For the delayed logistic system of Example 1, sinceu18
1u28522,1 holds for alla, the system~17! can always be
stabilized through a uniform adjustment for anya.

It is rather difficult to derive a set of conditions like Eq
~20!–~22! for a discrete system with order higher than tw
But the following example does demonstrate the possib
ties.

Example 2 (A delayed Hennon map!. Consider the follow-
ing third-order discrete system:

xt5g~xt21 ,xt22 ,xt23!

5aS 7

5
2xt21

2 1
3

10
xt22D1~12a!S 7

5
2xt22

2 1
3

10
xt23D .

This is a third-order version of the Hennon map and he
gives a pair of fixed points

x̄1,252
7

20
6

1

20
A6095$0.8839,21.5839%.

Simple mathematical manipulations reveal that
FIG. 5. Numerical simulations foru and ũ, a515/16 (y05y150.3333).
5-6
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FIG. 6. Numerical simulations ofg and g̃, a
54/5 (x05x15x250.3333).
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]xt21
522axt21

]g

]xt22
5

3

10
a22~12a!xt22

]g

]xt22
5

3

10
~12a!

,

so that at any fixed pointx̄,

g181g281g385
3

10
22x̄,

g182g281g385~122a!S 3

10
12x̄D .

Therefore, for bothx̄1 and x̄2, we haveg181g281g385” 1
andg182g281g385” 21.

Figures 6~a! and 6~b! show a typical trajectory and th
strange attractor formed for the case ofa50.8 A uniformly
lagged adjustment is implemented as

xt5g̃~xt21 ,xt22 ,xt23!

5~123g!g~xt21 ,xt22 ,xt23!1g~xt211xt221xt23!.

Figure 6~c! shows a bifurcation diagram for the adjus
ment parameterg. We see that, when 0.1,g,0.33, the
01621
system is stabilized tox̄1, but when0.33,g,0.5, the sys-
tem is stabilized tox̄2. Two typical trajectories are over
lapped in Fig. 6~d!.

VI. CONCLUDING REMARKS

It needs to be mentioned that the idea of controlling ch
or unstable periodic orbits through feedbacks is not new
physicists. For a chaotic discrete systemxt5 f (xt21), Pyra-
gas@3# discussed the possibility of applying a delayed fee
back control in the form of

xt5 f ~xt21!1k~xt212xt22!, ~23!

wherek is an arbitrary constant. Socolaret al. @6# extended
the Pyragas method to include, in the control term, mem
of all the previous states of the system~which may seem to
be in common with our mechanism in intuition!. Similarly
experimental studies have been found in other literat
listed in Refs.@5# and @6#.

Pyragas’ delayed feedback~23! is originally designed for
the first-order discrete system. Although adaptive adjustm
mechanism resembles Pyragas scheme in appearance,
does not exist any strict relationship between them. Tha
neither of them can be expressed as a special case o
other. The implementation of Pyragas’ method increases
dimensionality of the original system, which may not gua
antee in theory that an original stable system can still rem
‘‘stable.’’ The lagged adaptive adjustment mechanism p
posed in this paper, however, does ensure that all origin
stable systems remain stable, and by suitably adjusting fe
back parameters from zero onwards, a chaotic system w
definitely converge to its generic fixed points, should not
condition ~9! be violated. It is easy to implement an
achieves convergence at a rather high speed. Besides,
5-7
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quires neither apriori information about the system itself no
any externally generated control signal.

Finally, the~lagged! adaptive adjustment mechanism c
be similarly applied to stabilize spatiotemporal chaos
coupled map lattice systems. The issue of how to apply
technique to real systems where only global variables ra
ys

e

i-

01621
e
er

than local variables are observed~such as discussed in Re
@6#! will be an important subject of further research.
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