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Controlling high-order chaotic discrete systems by lagged adaptive adjustment
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A lagged adaptive adjustment mechanism has been developed to stabilize a high-order discrete system.
Theoretical analysis and computer simulations have been provided to show the effectiveness and efficiency of
this mechanism in practice.
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I. MOTIVATIONS represents the adjustment speed fith variable (
=1,2,...n) and is assumed to vary inc@nventional range
In recent years there has been much attention given tpp 1] and in ageneralized rang¢1,+ ).
theoretical and experlmt'a.nt.al methods for contr'olllng chaos, Let X be a fixed point of Eq(1), that is. X = F(Y). It is
or more generally, stabilizing unstable dynamical systems. ~
Recent advances and developments can be seen[frof) €Sy to see that the sys@pfha_res exactly the same set of
and references therein. In R¢R], an adaptive adjustment fixed points ofF, that is,X=Fp(X).
mechanism is proposed to stabilize an unstable multidimen- pengte 7(X) as the Jacobian matrix of the original sys-
sional dlsg:rete system.. This mechan.|sm, whllg |nh.er|ted fron?em F. evaluated aK, with N1 As, ... A} as then roots
the adaptive expectation scheme widely applied in econom- - Loy
- : of the characteristic equation, i.e.,
ics, possesses many unique advantages over the others such
as (i) demanding neithea priori information about the sys-
tem itself nor any externally generated control signal @nd
always forcing the original system to converge to its generic
periodic points. In this paper, the same adaptive “spirit” is
applied to the stabilization of an unstable high-order discrete
system with a lagged adaptive adjustment mechanism, where
adjustments are achieved through delayed feedback.
The issue of controlling high-order chaos in the frame-\;nare| is an identity matrix.
work of spatiotemporally coupled map lattice systems has . i v .
long been the interest of physicists. Experimental successe The St_ab"'ty of a fixed pointX, is jointly determined by
have been demonstrated in various researfB@ In con- &l the eigenvalueg;}. Let [Nmad=max|\j|. Mathemati-
trast, we shall focus on high-order discrete systems in gercally, the fixed pointX is stable if|\ pnad<1.
eral instead of some specific systems, and emphasize on ex- Denote a pair of complex conjugats and\; by
ploring the nature of unstable periodiixed) points. Both
theoretical studies and computer simulations will be carried
out to show the pros and cons of this mechanism in practice.

|M—J(>?>|=j[[1 (A—\))=0,

bji

)\J:aj+bj|, A=a — il

II. ADAPTIVE FEEDBACK MECHANISM b

Consider am-dimensional dynamical system defined by o
with the modulug\j|=[\;|= \/a]-2+ b]-z.
It is shown in Huang2] that, for an-dimensional dy-

Xer1=F(Xy), (1) namical system, Ed1), if an unstable fixed poirvfis either
£, with a Type-l fixed point <1 for all j=1,2,...n) or a
nne Type-II fixed point @;>1 for all j=1,2...n), it can al-
ways be stabilized through an adaptive adjustment mecha-
nism with a suitable choice of adaptive parameter matrix.

Now consider a general high-order discrete system:

whereX;= (X1t ,Xot, - - - Xpt), andF=(f,f,, ...
f; being well defined functions on a domainIif.

Definition 1 By adaptive adjustment mechanisiwe
mean the following adjusted system:

Xip1=Fp=(1—TD)F(X)+TX,, (2)

whereT'=diag{y1, 72, - . . ,¥a} is a diagonal matrix and is Ye=f(Yi-1.Yt-2, - - - Yion), (©)
referred to as aadaptive parameter matrixihe value ofy,

wheren>1 and, without loss of generality,is assumed to
*Electronic address: awhhuang@ntu.edu.sg be first-order continuous.
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The study of Eq(3) is usually conducted in a multidimensional space through variable transformations

X1t~ Yt-n+1
X2t=Yt-n+2
Xn—1t= Yi-1
Xnt= Yo (4)

with which the high-order dynamical system E@®) is converted into a multidimensional discrete dynamical system as
follows:

X1t+17 X2t

Xot+1= X3t

anl,t+1:Xn,t
Xn,t+1= F(Xn,t Xn-1gs -+ - Xayp)- )

Therefore, the stabilization of Eq3) can be achieved through the stabilization of Eg). If an adaptive adjustment
mechanism defined in Eq2) is applied, the system E¢5) must be modified as

Xip41= (1= y1)Xop+ ¥1X14
Xot+1= (1= ¥2) Xz + ¥oXo;

Xn-1t+1~ (1- 7n—1)xn,t+ Yn-1Xn-1t

Xnt+1~ (1- 'Yn)f(xn,t KXn—1ty « - - axl,t) T YnXn,ts (6)
|
with adjustment parameteng>0, fori=1,2,...n. adaptive adjustment mechanism for the high-order discrete
In reality, however, stabilizing the high-order systemdynamical systen(3).
through the implementations of adaptive mechani§mmay Definition 2 By a lagged adaptive adjustmerfor a

turn out to be either impractical or expensive. It can be botHigher-order discrete syste(8), we mean the following ad-
more practical and more economical to stabilize a high-ordeiusted system:

system defined by3) with adaptive adjustment through
lagged variables. Therefore, we propose the following lagged ~
Ye=f(Yi-1.Yt-2, - - Yi-n)

A
b3
3
|

3
Y

n n
3 :<1_§1 7]) f(Yi-1.Yi2, - - aytfn)"‘jzl YiYi-js

Y1 (7)

wherey;, j=1,2,...n, arefeedback parameters

It is not difficult to verify that, ify is a fixed point of the
high-order dynamical systeri), that is,y=1f(y,y, ....y),
theny is also a fixed point of and vice versa.

The practical implementation of lagged adaptive adjust-
ment [8] is illustrated in Fig. 1. While lagged variables
{yt_j}?:l are assumed to be available for the original sys-
tem, only “additive” and “scaling” devices are utilized to
achieve the adjustment. Therefore, the whole implementation

requires neither ariori internal information about the sys-
FIG. 1. Lagged adaptive adjustment. tem itself nor any externally generated control signal.
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With the same transformation given by Ed), the equivalent multidimensional counterpart for Eq. is

X1t+1~ X2t

Xot+1~ X3

Xn—1t+1= Xn t
n

Xnt+1~ ( 1_j21 7]) f(Xn,t s Xn—1¢s - - - Xl,t)*‘;l Yn—j+1Xj - 8

n

The differences in implementation between the adaptive The characteristic equation g'y) can thus be expressed
adjustment mechanism and lagged adaptive adjustment agg

clearly self-evident in Eq96) and (8).
A—a A" l-a\""?2—...—a,_ ;A—a,=0. (10
I1l. MAIN THEOREM
) o ) The convergence of adjusted systé@&) to the unstable
Let f{ denote the partial derivative dfwith respect to fi o . . i
i — ] ixed pointy requires that the maximum modulus of charac
yi-i evaluated at an unstable fixed poyntthat is, teristic roots for Eq.(10) must be strictly less than unity,
which can be ensured if each and evarfycan be forced to
) be arbitrarily small in absolute value by suitably choosing
Ve 1=V o =V =Y yi=y,forali=12,...n.
We thus need to show the existence of s{igfi} when
The following theorem provides a necessary and suffithe condition="_,f/ #1 is satisfied.
Cient Condition fOI’ the success Of Stabi|izati0n W|th |agged Actua”y, Cohsid]er an extreme case in Wthh a particu'ar
adaptive adjustment. - _ _ set{y*}"_, is chosen to force;=0, foralli=1,2,...n, so
Theorem 1.For a high-order discrete dynamical systemhat the characteristic equatiého) reduces to."=0, which
defined by Eq(3), with f being first-order continuous, when i, turn makes all eigenvalues take zero values.

(o of
Loy

and only when the condition Notice that the conditiong;=0, i=1,2,...n, implies
n that there exists at least one set of solutipp’}_; for the
2 fj’:)él, (9) following linear-equation system:
=1
: n
is met will there exist at least one set of feedback parameters fi’géi yEH(H—Lyr=f/, i=12,...p,

{¥¥}"_, such that the unstable fixed pointan be stabilized
through adaptive feedback defined by E) when y,

) or, in matrix form:
e (¥ —€,7 +¢), wheree;=0, foralli=1,2,...n.

Proof. We start with the “when” part, that is, the suffi- F.y=f, (11)
cient condition.
The related Jacobian evaluated at the unstable fixed pOi'W/herey:(y’l‘ Y-S ,yz)T, f=(f],f}, ... ,frr])T, and
y for Eq. (8) is given by i
= fr—1  f! f! £
0 1 0 O F1 Lo ! '
O 0 1 0 F2 f2 f2_1 st f2 A f2
:‘7(_): , F= : _ ., ., ,. H ./
0 0 0 1 Fi f! f! e -1 f!
an ap-; - A @ : : : '
L Fn) fr fl fl fl—1
where - .
N The sufficient condition for the existence of the solutipn
a=1-3 |t/ +y of Eqg. (11) is |F|#0. We shall further show thaF|#0 is
T = Y]l equivalent to conditior{9).
Apparently, summing up all row vectors of matfxgives
fori=12,...n. a null vector ifS{_,f/=1.

016215-3
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On the other hand, ifF|=0, there must exist a set of T=[1—(y1+ y,) 1f;+ y, =trace of 7,
scalarscq,Cs,, - - -C, (not all zero$ such thatc,F;+c,F,+
--c,F,=0, where0 indicates a null vector, which implies D=—[1—(y,+ y,)]f5— y,=determinant of 7,
that,

then the associated eigenvalues ﬂi@ can be simply ex-

n . - .
2 ijj, —c, for i=12, ..., pressed assee Ref[2] for a detailed discussion
=1

1
or, equivalentlyc,=c,=---=c,, the latter in turn reveal- )‘1-2:§(Ti T*~4D).
ing that>{'_;f/=1. _ _
Therefore, we can be ensured the existence of a unjque  The local convergency of the system to a particular fixed
for Eq. (11) when condition(9) is met. pointy (that is, the local stability of) is guaranteed if and
Furthermore, the continuity of functiohimplies the ex-  only if the following three inequalities hold simultaneously:
istences ofe; such that wheny,e (v —¢;,7 +¢), |

=1,2,...n, the maximum modulus of characteristic roots D<1
for Eq. (10) can be safely kept to be less than unity. 7-D<1
Next, we turn to prove the “only when” part, that is, the T+D>—1

necessity of Eq(9).

We proceed by showing that unity would be one of the  gypstituting T=[1-(y1+y2)1f}+y1 and D=-[1
characteristic roots of Eq10), should the conditior{9) be —(y1+ ¥2)1f4— v, will then give us the conditiong14)—

violated. (16). Q.E.D.

In fact, if A=1 is a solution of Eq(10), substit.tion of Therefore, the three inequalitiés4)—(16) form an effec-
A=1 into Eq.(10) would lead to an equality=j_,a;=1,  fiye region in the adaptive parameters, (y,) space, inside
which in turn demands that . o S —

which, all{y,,y,} combinations ensure the stability pf

n n n
(1—2 y,—)z 1+ =1 (12) IV. NUMERICAL SIMULATIONS
=1 = =1

Example 1 (Delayed logistic systertonsider the follow-
No matter What’)/j 's are taken, the equality of E(ﬁlZ) is |ng second-order discrete system:

always achieved i‘rz?zlfj’=1. That is, there is no way to
improve the stability of the fixed point when condition(9) Y1=0(Yt-1,Yt-2)
IS VIOla.ted' QE.D. . I =4day; 1(1-y ) +4(l-a)y, o(1-y o), (17
To improve our understanding of the functioning of
lagged adaptive adjustment, we shall then examine a sinivhere I>a>0. This system is a higher-order version of the
plest second-order discrete system in detail. famous logistic equation and hence gives a unique nontrivial
Corollary 1 (A general ;econd-order discrete systeRor fixed pointy=3/4, which is stable when Eq&L4)—(16) hold
a general sec_ond—order discrete §ys§,¢mf(yt,l Yi-2), the  gor v1=7v,=0, which leads to 1/ a<3/4. Therefore, either
lagged adaptive adjustment achieved through when aeA;=(0,1/2) or acA,=(3/4,1), the nontrivial

Vi=F(Vi 1.V ) ﬁxed pointy = 3/4 becqmes uns_table. It is_wo_rthwhile to no-
tice that the asymptotic dynamical behavior in long term are
=[1—(y1+v2) 1 (Vi—1.Yi—2) T yiYio1 T v2y, (13)  totally different whenae A; andae A,. This can be seen
__ from the shapes of chaotic strange attractors depicted in the
can force the system to converge to an unstable fixed goint (y,,y;—4)-plane, as shown in Fig. 2. It is easy to verify that

if and only if the following conditions are met: 0.(y) = —2a and 0(y) = — 2(1—a), which gives
—[1=(y1+ ¥2)1f5— 7.<1, (14) 0,— 0,=2—4a
[1=(yit ) I(Ff1+f5) +(vit 72) <1, (19 01+ 0,=—-2

1— (et £V (v — o) > — 1. 16 therefore, condition(9) is not violated and according to
1=ty (=) +(n=72) (18) Theorem 1 the implementation of a lagged adaptive adjust-
Proof. The Jacobian of Eq(13) at any specified fixed ment mechanism by
ointy is given b ~
pointy 15 9 Y Yi= 0(Yi-1,Y1-2) = (1= y1i—y2)[4ay;—1(1—Yy;-1)

0 ! +4(1-a)yi 21—y ) I+ v1Yi-1t ¥2Yi-2,

[1-(nty)]faty. [1-(nty)lfi+ i) _ - .
should be an effective and efficient way to stabilize the
Denote system.

J(y)=

016215-4
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FIG. 2. Strange attractors of) (Yo=Y,
=0.3333).

Ye-1 (a) @ = 1/16 Yio1 (b) a = 15/16

1_ - 1_
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02 04 06 08 1 02 04 06 08 1
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The conditiong14)—(16) become

1
72>m[1—23—2(1—a) 71l

18
Yo<l—-m (18

(3—4a)y,<3—-4a+(4a—1)y;
Now we examine two particular values af one inA;

and the other irA,.
Case | a=1/16. Condition(18) reduces to

7 15
72>2—3 2371

Y2<l—y

1 3

< —_—
Y2 1171

Case Il a=15/16. Condition(18) reduces to
7 1

9 9

Y2o<l—y

11
Yo>1-— 3N

Y1<7¥2

The effective regions for the feedback parameterand

v, formed by the above inequalities are depicted in Fig. 3.

While Fig. 4a) illustrates a typical trajectory of a delayed

Y2
2_

72\

(a) a=1/16
; 24

72 = (L=3/11m)

| = 7= 157723

<1~ 5
re=m

Yo=—(7+ 71')'/.9

logistic system fora=1/16, two stabilized trajectories start-
ing at the same initial points as in Fig@2 and Fig. 4a) are
shown in Figs. &) and 4c) for different feedback param-
eters. One qualitative difference is observed between the ef-
fective regions shown in Figs.(& and 3b). While in the
former cased e A,), the effective region covers parts of the
v, and y, axes, which means that a lagged adaptive adjust-
ment from eithery,_; or y;_» alone is sufficient to stabilize
the original system. But for the latter casg<A,), the ef-
fective region only covers parts of thg axis but not they,
axis, which means that a lagged adaptive adjustment from
eithery,_, alone is insufficient to stabilize the original sys-
tem[7]. This is shown in Figs. ®) and 5c). While lagged
adaptive adjustment fromy;_, alone does stabilize the tra-
jectory in a few iterations, lagged adaptive adjustment from
Y;_» alone fails to do so.

V. UNIFORMLY LAGGED ADAPTIVE ADJUSTMENT

It is also observed that in Fig. 2, the diagonal lineg (
=1,) pass the effective regions for both cases, which means
that the stabilization can always be achieved by uniformly
lagged adaptive adjustment.

Definition 3 By a uniformly lagged adaptive adjustment,
we meany;=y/n>0 forallj=1,2,... nin Eq.(7), that is,

yt:?y(ytflrytfb oo Yion)

n
==Y f(Yi-1.Yi-2, - - - 1thn)+7jzl Yi-j -

(19

(b) a = 15/16
Q2 =1-+11/3m

FIG. 3. Effective regions of
feedback parameters.

9 = .
-2 -1
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yf (a) original trajectory y’;f (b) 71 = 72 = 0.4 y’;f () 1 = 1.3, 7o = —0.5
08 0.8 0.8
06 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 50 100 150 200 0 20 40 60 80 100 0 20 40 60 80 100
Iterations ¢ Iterations ¢ Iterations ¢

FIG. 4. Numerical simulations fof and9, a=1/16 (y,=y,=0.3333).

By noticing thaty,— Y if y— 1/n, we may expect that the ~ For the delayed logistic system of Example 1, sie
results stated in Theorem 1 still apply, that is, conditi@nis  + 6;,=—2<1 holds for alla, the systen{17) can always be
both a necessary and sufficient condition for the functioningstabilized through a uniform adjustment for amy
of lagged adaptive adjustment. It is a pity that we are still It is rather difficult to derive a set of conditions like Egs.
unable to verify such intuition in theory. Nevertheless, for a(20)—(22) for a discrete system with order higher than two.
second-order discrete system, we do arrive at the fO”OWingBut the fo”owing examp|e does demonstrate the possibi“_
conclusion: ties.

Corollary 2. For a second-order discrete dynamical sys- Example 2 (A delayed Hennon magonsider the follow-
tem defined by =f(y;_1,y;-2), if Z{_;f1+f,#1 holds at ing third-order discrete system:
an unstable fixed point, there always exists an inteival
=(1/2— a,1/2+ B), «,=0,+p8),a,8=0, such that the
unstable fixed poiny can be stabilized through a uniformly  x,=g(x,_1,X(—2,%(_3)
lagged adaptive adjustment defined by E) whenyel.

Proof. For a second-order discrete system, a uniformly _ (7. _ 3 (1-w) T 2 .3
lagged adaptive adjustment amountsyto=y,= y>0, and, 5 “t-17 1072 5 “t=27 1073
therefore, condition$14)—(16) become
—(1-2y)f,—y<1, (20 This is a third-order version of the Hennon map and hence
gives a pair of fixed points
(1-2y)(f1+f))+2y<1, (21
— 7 1
(1-29)(f|—f)>—1. (22) X15= ~ 55 55 /609={0.8839 1.5839.

As long asf;+f,#1, the stabilization can be ensured

through letting 2y approach unity either from belowy( Simple mathematical manipulations reveal that
=1/2— €, e—0) or from above §=1/2+¢€, e—0). Q.E.D.

Yt . . . Yt Ye
;1 (a) original trajectory 1 (b) 71 = 0.6, 72 = 0 1 () 71 =0, y5 — 0.6
0.8 0.8 0.8
0.6 0.6 0.6
0.4] 0.4 0.4
0.2] 0.2 0.2
0 50 100 150 200 0 20 40 60 80 100 0 20 40 60 80 100
Iterations ¢ Iterations ¢ Iterations ¢

FIG. 5. Numerical simulations fof andd, a=15/16 /o=y1=0.3333).
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Tt
21 (a) original trajectory 21 (b) strange attractor

il

1y b0 ROO

FIG. 6. Numerical simulations af andg, a
24 (c) bifurcation of 2 (d) stabilized trajectories =415 (Xo=Xx;=x;=0.3333).

Tterations ¢

y=015

0 20 40 60 80 100

__________________________ 7=04
-2- ¥ -2- Iterations ¢
g system is stabilized tEl, but when0.33< y<0.5, the sys-
- —ZaXt_l . . — . . .

e tem is stabilized tox,. Two typical trajectories are over-
ig 3 lapped in Fig. &d).

X =Ea—2(1—a)xt,2,
t=2 VI. CONCLUDING REMARKS
d 3

axg = E(l— ) It needs to be mentioned that the idea of controlling chaos
t—2

or unstable periodic orbits through feedbacks is not new to
o physicists. For a chaotic discrete systeps f(x;_,), Pyra-

so that at any fixed point, gas[3] discussed the possibility of applying a delayed feed-
back control in the form of

gi+g§+g§=1%—2x, Xe= (X 1) HK(X - 1= X 2), (23
wherek is an arbitrary constant. Socolat al. [6] extended
the Pyragas method to include, in the control term, memory
3 of all the previous states of the systémhich may seem to
91— 05+ gé:(l_za)(ﬂﬁzﬁ' be in common with our mechanism in intuitioprSimilarly
experimental studies have been found in other literature
listed in Refs[5] and[6].
Pyragas’ delayed feedba¢R3) is originally designed for
Therefore, for bothx; andx,, we haveg;+g,+gs#1  the first-prder discrete system. Although qdaptive adjustment
andg]—g,+g4# —1. mechanism _resemble_s Pyrag_as sc_heme in appearance, t_here
Figures 6a) and &b) show a typical trajectory and the does not exist any strict relationship between them. That is,

strange attractor formed for the casecf 0.8 A uniformly ~ N€ither of them can be expressed as a special case of the
lagged adjustment is implemented as other. The implementation of Pyragas’ method increases the

dimensionality of the original system, which may not guar-
antee in theory that an original stable system can still remain
X =9(X_ 1. Xt 2% _3) “stable:” Th_e lagged adaptive adjustment mechanisr_n_pro-
t A28 posed in this paper, however, does ensure that all originally
=(1-39)g(Xi—1,Xt—2,X—3) T Y(X¢_ 1+ X2+ X;_3). stable systems remain stable, and by suitably adjusting feed-
back parameters from zero onwards, a chaotic system would
definitely converge to its generic fixed points, should not the
Figure &c) shows a bifurcation diagram for the adjust- condition (9) be violated. It is easy to implement and
ment parametery. We see that, when 0<1y<<0.33, the achieves convergence at a rather high speed. Besides, it re-
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quires neither griori information about the system itself nor than local variables are observéslich as discussed in Ref.

any externally generated control signal. [6]) will be an important subject of further research.
Finally, the (lagged adaptive adjustment mechanism can
be similarly applied to stabilize spatiotemporal chaos in AU LS SIS

coupled map lattice systems. The issue of how to apply the | am grateful to Grant Taylor and P. Parmananda for their
technique to real systems where only global variables ratheraluable suggestions and comments.
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